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This paper studies the nature of the effective velocity boundary condition for liquid
flow over a plane boundary on which small free-slip islands are randomly distributed.
It is found that an effective Navier partial-slip condition for the velocity emerges
from a statistical analysis valid for arbitrary fractional area coverage β . As an
example, the general theory is applied to the low-β limit and this result is extended
heuristically to finite β with a resulting slip length proportional to aβ/(1 − β), where
a is a characteristic size of the islands. A specification of the nature of the free-slip
islands is not required in the analysis. They could be nano-bubbles, as suggested by
recent experiments, or hydrophobic surface patches. The results are also relevant for
ultra-hydrophobic surfaces exploiting the so-called ‘lotus effect’.

1. Introduction
The recent blossoming of research in micro-fluidics has prompted renewed interest

in the possibility of slip boundary conditions at the contact of a liquid with a solid
wall (see e.g. Lauga, Brenner & Stone 2007; Neto et al. 2005). While many experiments
have provided evidence for a violation of the classical no-slip boundary condition
at small spatial scales (e.g. Vinogradova 1999; Watanabe, Yanuar & Udagawa 1999;
Pit, Hervet & Léger 2000; Craig, Neto & Williams 2001; Zhu & Granick 2001, 2002;
Tretheway & Meinhart 2002; Cheng & Giordano 2002), the physical mechanisms
responsible for this phenomenon are still unclear. An interesting possibility is the
recent discovery of what appear to be small gas nano-bubbles or pockets attached
to the wall (Bunkin et al. 1996; Watanabe et al. 1999; Ishida et al. 2000; Tyrrell &
Attard 2001; Holmberg et al. 2003; Steitz et al. 2003; Simonsen, Hansen & Klösgen
2004; Dammer & Lohse 2006; Sbragaglia et al. 2006). The evidence for the existence
of these nano-bubbles is somewhat indirect, but nevertheless compelling. It is also
hypothesized and, sometimes, experimentally verified (Watanabe et al. 1999), that
gas pockets may form in cracks or other imperfections of the solid wall, thereby
decreasing the overall wall stress.

In order to explore the macroscopic consequences of the existence of such drag-
reducing structures on a solid wall – be they gaseous or of another nature – in
this study we consider by statistical means the effective velocity boundary condition
produced by a random distribution of small free-slip regions on an otherwise no-slip
boundary. We consider both the three-dimensional problem, in which the regions
are equal disks, and the two-dimensional problem, in which they are strips oriented
perpendicularly to the flow. While idealized, these geometries provide some insight
into the macroscopic effects of randomly distributed microscopic free-slip regions.
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Figure 1. Solid no-slip boundary with a random distribution of equal circular free-slip areas.

We find that, away from the wall, the velocity field appears to satisfy a partial-slip
condition with the wall velocity linearly related by a possibly non-local operator to
the viscous traction at the wall. After deriving this general result, as an example we
solve the problem to first order accuracy in the fractional area coverage β . In this
limit the relation becomes local and an explicit result for the conventionally defined
slip length is derived. The dilute-limit result is extended to finite area fractions by
means of a heuristic argument.

As discussed in § 8, our results are consistent with those of a recent paper by
Lauga & Stone (2003), who assumed a periodic distribution of free-slip patches
on a boundary, as well as those of an older paper by Philip (1972) who similarly
investigated the effect of free-slip strips arranged periodically on a plane wall parallel
or orthogonal to the direction of the flow.

The present results are also related to the so-called ‘lotus effect’ (Barthlott &
Neinhaus 1997) exploited to obtain ultra-hydrophobic surfaces. Such surfaces are
manufactured by covering a solid boundary with an array of hydrophobic micron-
size posts which, due to the effect of surface tension, prevent a complete wetting of the
wall (see e.g. Ou, Perot & Rothstein 2004; Ou & Rothstein 2005; Choi & Kim 2006;
Joseph et al. 2006). In the space between the posts the liquid remains suspended away
from the wall, with its surface in contact only with the ambient gas, and a concomitant
reduction in the mean traction per unit area. Another instance of drag reduction by
a similar mechanism has also been reported in Watanabe et al. (1999). These authors
studied the pressure drop in the flow of a viscous liquid in a tube, the wall of which
contained many fine grooves which prevented a complete wetting of the boundary.

The approach used in this paper is mainly suggested by the theory of multiple
scattering (see e.g. Foldy 1945; Twersky 1957, 1983) and was used previously to
derive the effective boundary conditions at a rough surface for the Laplace and Stokes
problems (Sarkar & Prosperetti 1995, 1996). More recent studies devoted to the same
problem are the papers by Jäger & Mikelić (2001) and Tartakovsky & Xiu (2006).

2. Formulation
We consider the flow in the neighbourhood of a locally plane boundary† B

with a composite micro-structure which dictates free-slip conditions on certain areas
s1, s2, . . . , sN and no-slip conditions on the remainder B − ∪N

α=1s
α (figure 1). If each

† For the present purposes a curved boundary can be considered plane provided the radius of
curvature is large compared with the size of the free-slip regions and their mean reciprocal distance,
of order a/β1/2.
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‘island’ sα is sufficiently small, and ∪N
α=1s

α is also sufficiently small (both in a sense
to be made precise later), near the boundary the flow is described by the Stokes
equations:

∇p = µ∇2u, ∇ · u = 0, (2.1)

in which p and u are the pressure and velocity fields and µ the viscosity. On the
free-slip regions u satisfies the condition of vanishing tangential stress:

tJ · (τ · n̂) = 0, x ∈ sα, α = 1, 2, . . . , N, J = 2, 3, (2.2)

where t2 and t3 are two unit vectors in the plane and τ the viscous stress tensor,
while, on the rest of the surface,

u = 0, x �∈ ∪N
α=1s

α. (2.3)

The normal velocity vanishes everywhere on B.
We start by decomposing the solution (p, u) as

u = u0 +

N∑
α=1

vα, p = p0 +

N∑
α=1

qα. (2.4)

Here u0 and p0 are the (deterministic) solution satisfying the usual no-slip condition
on the entire boundary B while the fields (qα, vα) account for the effect of the αth
island. We define these local fields so that vα vanishes everywhere on B except on sα ,
where it is such that the free-slip condition (2.2) is satisfied. To express this condition
it is convenient to define

wα = u0 +
∑
β �=α

vβ, rα = p0 +
∑
β �=α

qβ, (2.5)

so that, for every α = 1, 2, . . . , N ,

u = vα + wα, p = qα + rα. (2.6)

On sα , then, vα satisfies

tJ · (τ vα · n̂) = − tJ · (τwα · n̂), x ∈ sα, J = 2, 3, (2.7)

where

τ vα = µ[∇vα + (∇vα)T ], τwα = µ[∇wα + (∇wα)T ], (2.8)

the superscript T denoting the transpose. Clearly

vα → 0, qα → 0 as |x − yα| → ∞, (2.9)

with yα a reference point on the αth island. It is evident that both fields vα and wα

satisfy the Stokes equations. In the terminology of multiple scattering, they are often
referred to as the ‘scattered’ and ‘incident’ fields, respectively (see e.g. Foldy 1945;
Rubinstein & Keller 1989).

3. Averaging
We assume that the free-slip islands are identical circular disks with radius a,

centred at yα , with α =1, 2, . . . , N . We make use of the method of ensemble averaging
and consider an ensemble of surfaces differing from each other only in the arrange-
ment of the N free-slip islands. Each arrangement, or configuration, is denoted by
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CN = ( y1, y2, . . . , yN ). A particular configuration will then occur with a probability
P (CN ) = P (N) normalized according to

1

N!

∫
d2y1 · · ·

∫
d2yNP ( y1, . . . , yN ) ≡ 1

N!

∫
dCNP (N) = 1. (3.1)

The ensemble-average velocity is defined as

〈u〉(x) =
1

N!

∫
dCNP (N) u(x|N) (3.2)

where the notation u(x|N) stresses the dependence of the exact field not only on the
point x, but also on the configuration of the N islands. In view of the fact that u0 is
independent of the configuration of the disks, substitution of the decomposition (2.4)
into (3.2) gives

〈u〉(x) = u0(x) +
1

N!

N∑
α=1

∫
dCNP (N) vα(x|N). (3.3)

Since the disks are identical, each one gives the same contribution to the integral.
Upon introducing the conditional probability P (N − 1| y1) defined so that P (N) =
P ( y1) P (N − 1| y1), we may therefore write

〈u〉(x) = u0(x) +
1

(N − 1)!

∫
dCNP ( y1) P (N − 1| y1) v1(x| y1, N − 1) (3.4)

or, in terms of the conditional average

〈v1〉1(x| y1) =
1

(N − 1)!

∫
dCN−1P (N − 1| y1) v1(x| y1, N − 1), (3.5)

〈u〉(x) = u0(x) +

∫
B

d2y P ( y) 〈v〉1(x| y), (3.6)

where the integral is over the entire boundary. For convenience, here and in the
following, we drop the superscript 1 on the quantities referring to disk 1. Since vα

and qα satisfy the Stokes equations everywhere, so do 〈v〉1 and 〈q〉1. The boundary
conditions are

〈v〉1 = 0, x /∈ s, (3.7)

while

tJ · (〈τ v〉1 · n̂) = − tJ · (〈τw〉1 · n̂), x ∈ s, J = 2, 3. (3.8)

Note that 〈
τw
jk

〉
1
= µ(〈∂jwk〉1 + 〈∂kwj 〉1) = µ(∂j 〈wk〉1 + ∂k〈wj 〉1), (3.9)

and similarly for 〈τ v
jk〉1 since averaging and differentiation commute as is evident

from the definition (3.2). The normal velocity vanishes everywhere:

〈v⊥〉1 ≡ n̂ · 〈v〉1 = 0, x ∈ B. (3.10)

It may be noted that P (x) is just the number density of free-slip islands per unit
surface area of the boundary; the area fraction β covered by these islands is

β(x) =

∫
|x− y|�a

P ( y) d2y � πa2P (x) + O(a2/L2), (3.11)

where L, assumed much greater than a, is the characteristic length scale for variations
of the number density.
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The framework just described can be readily extended to disks of unequal radius,
and to non-isotropic islands such as ellipses. In both cases the probability density
would depend on a suitably enlarged list of variables such as the disk radius, the
characteristic size, orientation and aspect ratio of the ellipses, and so on.

4. The effective boundary condition
Now we derive a formal expression for the effective boundary condition on B. To

this end, let GW
ij ( y; x) be the Green’s tensor for the Stokes problem, vanishing at

infinity and on the plane boundary B. Then

〈vj 〉1(x| y) =

∫
B

[
〈−qn̂i + (τ v · n̂)i〉1(s| y)GW

ij (s; x) − 〈vi〉1(s| y)T W
ijk(s; x)nk

]
d2s, (4.1)

where T W
ijk is the stress Green’s function associated with GW

ij (see e.g. Kim & Karrila
1991; Pozrikidis 1992) and the integral is extended over the entire plane boundary.
This formula can be considerably simplified by recalling that, on the boundary, v

vanishes everywhere outside s while GW vanishes everywhere. Furthermore, on s, the
tangential tractions also vanish. Hence, upon taking the x1-axis along the normal
with x1 = 0 on the plane, we have

〈vj 〉1(x| y) =

∫
s

〈vi〉1(s| y)T W
ij1(s; x) d2s, (4.2)

where now the integration is extended only over the free-slip island. We now consider
points x such that |x − s| 
 a, but such that |x − s| is sufficiently small to be in the
Stokes region adjacent to the boundary. It can be verified that, in this range, we have

T W
ij1(s; x) = 2Tij1( y; x)

[
1 + O

(
a

|x − s|

)]
, (4.3)

where Tijk is the free-space stress Green’s function:

Tijk( y; x) =
3

4π

(yi − xi)(yj − xj )(yk − xk)

| y − x|5 . (4.4)

Thus, (4.2) becomes

〈vj 〉1(x| y) � −2πa2Tij1( y; x)Vi( y), (4.5)

where

Vi( y) =
1

πa2

∫
|s− y|�a

〈vi〉1(s| y) d2s (4.6)

is the average velocity over the disk centred at y. Note that V1 = 0 as v1 = 0. This
result may now be inserted into the expression (3.6) for the average field to find

〈uj 〉(x) = u0
j (x) − 2πa2

∫
d2y P ( y) Tij1( y; x)Vi( y). (4.7)

We now take the ‘inner limit‘ of (4.7) by letting the field point x approach B to find
(see e.g. Pozrikidis 1992, pp. 23 and 27)

lim
x1→0

Tij1( y; x) = − 1
2
δij δ(x − y) (4.8)

and recall that u0
j (x) = 0 at the wall so that

〈u‖〉(x) = πa2P (x) V (x), (4.9)
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where u‖ is the velocity component parallel to the boundary. Since the problem is
linear, a dimensionless linear tensor operator Wij must exist such that

Vi =
a

µ
Wij (〈τw〉1 · n̂)j (4.10)

so that the average field satisfies the partial-slip condition

〈u‖〉(x) =
πa3

µ
P (x)W · (〈τw〉1 · n̂) � aβ

µ
W · (〈τw〉1 · n̂), (4.11)

where the approximate sign is a consequence of equating πa2P with the area fraction
β (see equation (3.11)). This is the main result of this paper, and shows the emergence
of a Navier-type mixed-slip effective boundary condition for an arbitrary fraction of
the wall surface covered by free-slip patches. It can form the starting point of further
analysis or numerical computation. A simple application to the case of small area
fraction β will be found in the next section and a heuristic argument for the general
case in § 6.

It may be noted that, according to (3.8), 〈v〉1 is forced by a generally spatially
varying 〈τw〉1 · n̂ and, therefore, one may expect the operator W to be non-local. It
should also be noted that the term 〈τw〉1 appearing here is not the average viscous
stress of the total mean flow, to which in general it will be related by a non-necessarily
local linear relation. These considerations show that the relation between the wall
velocity and viscous traction may be expected to be non-local in general, so that the
slip length will be an operator, rather than a scalar quantity. Furthermore, since W is
not necessarily an isotropic tensor, in general there is a possibility for 〈u‖〉 not to be
parallel to the local traction at the wall.

We can now be more specific about the assumption made at the beginning of § 2 on
the validity of the Stokes equations near the wall. The condition for this assumption
is evidently that the Reynolds number

Re =
2a|V |

ν
(4.12)

with ν the kinematic viscosity, be sufficiently small. Equation (4.10) shows that |V | is
of the order of a/µ times the magnitude of the wall shear stress; a precise result in a
particular case is derived in Appendix A.

5. First-order problem
While exact, the result (4.11) expresses the effective boundary condition on the

unconditionally averaged field 〈u〉 in terms of the conditionally averaged wall stress
〈τw〉1. In order to obtain the conditionally averaged velocity 〈u〉1 necessary to evaluate
this quantity, one would need an effective boundary condition which would involve the
wall stress averaged conditionally with the position of two free-slip islands prescribed,
and so on. This is the well-known closure problem that arises in ensemble averaging.
An explicit solution can only be found by somehow truncating the resulting hierarchy
of equations.

The lowest-order non-trivial truncation can be effected with an accuracy of first
order in the area fraction β . It is well known that, in this limit, the average ‘incident’
〈w〉1 may be approximated by the unconditional average 〈u〉 so that

〈u‖〉(x) =
aβ

µ
W · [〈τ 〉(x) · n̂] + o(β). (5.1)
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If the density of the islands is small, since w accounts for the effect of all the other
islands on the one centred at y, 〈w〉1 is slowly varying near y so that

〈w〉1(x) = 〈w〉1( y) + [(x − y) · ∇]〈w〉1( y) + · · · (5.2)

and, therefore,〈
τw
jk

〉
1
= µ(∂j 〈wk〉1 + ∂k〈wj 〉1) � µ(∂j 〈uk〉 + ∂k〈uj 〉) = 〈τjk〉 (5.3)

is approximately constant over the island |x− y| � a. The velocity field 〈v〉1 is therefore
the solution of the Stokes equations (2.1) vanishing at infinity and whose normal
component vanishes on the entire plane; the two tangential components vanish for
|x − y| >a while, for J = 2, 3 and |x − y| <a

tJ · ([∇〈v〉1 + (∇〈v〉1)
T ] · n̂) = − 1

µ
tJ · (〈τ 〉 · n̂) = const. (5.4)

This problem is solved in the Appendix A where it is shown that

Wij =
8

9π
δij (5.5)

so that the effective boundary condition (4.11) becomes

〈u‖〉(x) =
8

9π

a

µ
β(x)(〈τ 〉(x) · n̂) + o(β). (5.6)

This relation shows that, to the present approximation, the slip length � is given by

� =
8

9π
β a. (5.7)

It may be expected that, if the islands had an intrinsic direction (e.g. an elliptical
shape) and were not randomly oriented, the tensor Wij would not be isotropic so that
the average surface traction and surface velocity would not be collinear.

6. A heuristic argument for large area fraction
We now treat in a heuristic manner the non-dilute case of β finite. For this purpose,

we imagine that an average partial-slip condition has been established by the presence
of many free-slip islands, and we consider the effect of a single free-slip disk on this
average field.

Our starting point is equation (4.7) in which now the field u0
j (x) is to be interpreted

as the average field, rather than the ‘bare’ field as before. Now, upon taking the
inner limit that led to (4.8), this term will give a β-dependent non-zero contribution
c(β)〈u‖〉 which does not vanish on the wall. In place of (4.9), we thus would find

〈u‖〉(x) = c(β) 〈u‖〉 + πa2P (x) V (x). (6.1)

By (5.6), this argument leads to the estimate

� � 8

9π

β

1 − c(β)
a. (6.2)

For consistency with the dilute limit of the previous section, we must require that
c(0) = 0. In the opposite limit β → 1, one may expect that � diverges, which is also
confirmed by existing analyses (see e.g. Lauga & Stone 2003). The simplest possibility,
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which gives the same singular behaviour as found by Lauga & Stone (2003) for large
slip lengths, is c(β) = β , with which we have the estimate

� � 8

9π

β

1 − β
a. (6.3)

An exact result for the non-dilute case can be obtained from the definition (4.10) of
the tensor W. If in this relation we take (〈τw〉1 · n̂)j to be a unit vector in each one of the
coordinate directions, we are led to the same calculation as carried out in the previous
section with the result that W ij acting on a unit vector equals (8/9π)δij whatever
the fractional area coverage. This result does not necessarily imply that the linear
operator W is isotropic, but only that the average of its kernel enjoys this property.

7. The two-dimensional case
A similar analysis can also be applied to the analogous two-dimensional case, i.e.

a surface with a random distribution of parallel, or nearly parallel, free-shear strips
of width a oriented perpendicular to the flow direction. The developments at the
beginning of § 4 are still valid and we may start from (4.2) noting that, in place of
(4.4), we have

Tijk( y; x) =
1

π

(yi − xi)(yj − xj )(yk − xk)

| y − x|4 , (7.1)

so that (4.2) becomes, in this case,

〈vj 〉1(x|ξ ) � 2aTj21(ξ ; x)V2(ξ ), (7.2)

where ξ is the coordinate in the direction parallel to the plane. Here

V2(ξ ) =
1

a

∫
|ζ−ξ |�a

〈v2〉1(ζ |ξ ) dζ (7.3)

is again the average velocity over the strip centred at ξ . The expression (3.6) for the
average field is modified to

〈uj 〉(x) = u0j (x) + 2a

∫
dξ P (ξ ) Tj21(ξ ; x)V2(ξ ). (7.4)

The analogue of (4.8) is still valid so that

〈u2〉(ξ ) = a P (ξ ) V2(ξ ), (7.5)

where u2 is the velocity component parallel to the boundary.
As before, from the linearity of the problem we deduce the existence of a dimen-

sionless quantity W such that

V =
a

µ
W

〈
τw
xy

〉
1

(7.6)

so that the average field satisfies the partial-slip condition

〈u〉(ξ ) =
a

µ
β(ξ )W

〈
τw
xy

〉
1
, (7.7)

where we have used the fact that the fraction of the boundary covered by the free-slip
strips is now given by

β(ξ ) =

∫
|ζ−ξ |�a

P (ζ ) dζ � aP (ξ ) + O(a2/L2). (7.8)
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The solution of the problem in the dilute limit is given in Appendix B. One finds

W =
π

16
(7.9)

so that the effective boundary condition becomes

〈u〉(ξ ) =
π

16

a

µ
β(ξ )〈τxy〉 + o(β). (7.10)

Arguments similar to those presented in § 6 permit us to extend this dilute-limit
case to finite β with the result

� =
π

16

β

1 − β
a, (7.11)

8. Conclusions
We have shown that an effective Navier partial-slip condition for the velocity on

a wall covered by a random arrangement of free-slip disks or two-dimensional strips
emerges from a statistical analysis. For the case of disks we have proposed for the
slip length � the relation

� =
8

9π

β

1 − β
a, (8.1)

where a is the common radius of the disks. The first-order result � = (8/9π)βa derives
from a rigorous calculation given in § 5. The finite-β correction in the denominator
derives from heuristic considerations.

These expressions have been obtained by starting from a rigorous result, given in
equation (4.11), which is of general validity and can be used to obtain closures based
on numerical simulations. As argued in § 4, one may expect that, in a correct theory,
the slip length will be a non-local linear operator rather than a scalar.

One of the motivations of this study was the possibility that gaseous structures
attached to the solid wall, such as nano-bubbles, could furnish a mechanism explaining
the partial slip observed by several investigators and it is therefore interesting to
examine how the result (8.1) compares with available data.

The study of Simonsen et al. (2004) quotes a � 75 nm and β � 60 %. With these
values, the estimate (8.1) gives � � 32 nm. This value for the slip length is similar to
that measured by several investigators, such as Zhu & Granick (2002), who report
0 � � < 40 nm for water, and Craig et al. (2001), who report 0 � � < 18 nm, for water–
sucrose solutions.

Wu et al. (2005) measure a very low nano-bubble number density of about 3
bubbles per 10 µm2, with typical radii of the order of 100 nm, which gives β � 1 % and
� � 0.3 nm. This is small, but not out of line with some of the existing measurements.

The radius of surface nano-bubbles reported by Holmberg et al. (2003) is in the
range 25 to 65 nm while that reported by Ishida et al. (2000) is of the order of 300 nm.
With an area coverage of 20 %, we can estimate a slip length between about 2 and
20 nm. Again, these numerical values are in the expected range.

Tyrrell & Attard (2001) and Steitz et al. (2003) measure an area coverage of the
order of 90 %. With a =10 and 100 nm, our heuristic result (8.1) gives slip lengths of
25 and 250 nm, respectively. Unfortunately, neither group measured the slip length.

Tretheway & Meinhart (2002) measured a slip length of about 1 µm, but made no
estimates of area coverage or free-slip patch size. With � =1 µm and β ∼ 50 %, (8.1)
gives a bubble radius a =3.53 µm. This is another case for which it would be of great
interest to have some information on the surface structures.
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The free-slip islands in Watanabe et al.’s (1999) work were cracks with a width of
about 10 µm and a length of the order 100 µm. If an equivalent radius is estimated as
πa2 = 10 × 100 µm2, one finds a � 18 µm. In this case, as already found by Lauga &
Stone (2003), one would need a large value of β to recover the slip length of 450 µm
estimated by the authors.

According to Craig et al. (2001), the slip length is a function of the shear stress.
Zhu & Granick (2002) find a threshold value of the flow rate for the appearance of
a slip effect. These are inherently nonlinear results, which cannot be captured by a
linear model such as the one we study which, by its very nature, is only applicable
for small shear.

It is also of interest to compare our results with those of Lauga & Stone (2003)
obtained for flows in a tube with a periodic arrangement of free-slip rings perpendi-
cular to the flow. For large tube radius, this arrangement should be comparable to
our two-dimensional analysis. For the general case, their solution is numerical, but
they provide an approximate analytic expressions valid for large tube radius, namely

� =
H

2π
log

(
sec

(
π

2
β

))
, (8.2)

where H is the spatial period. Upon expanding for small β , we find

� � π

16
Hβ2, (8.3)

which, with the identification Hβ = a, is in precise agreement with our two-dimensional
result (7.10). Lauga & Stone (2003) also give a similar result for free-slip strips parallel
to the flow, but this situation is not comparable with either of the two that we have
considered.

We are indebted with Dr S.M. Dammer for directing us to many pertinent
references. M. S. is grateful to Professor D. Lohse for several enlightening discussions
and to STW (Nanoned Programme) for financial support.

Appendix A. Solution of the three-dimensional problem
We take the centre of the island as the origin, with the z-axis normal to the plane

and the x-axis parallel to the tangential component of the traction 〈τ 〉 · n. Since the
normal velocity component vanishes, with this choice of coordinates we require

∂vx

∂z
= S,

∂vy

∂z
= 0, (A 1)

where

S = − 1

µ
(〈τ 〉 · n)x. (A 2)

Here and in the following we write v in place of 〈v〉1 for convenience. Furthermore
we measure lengths with respect to the island radius a, although no special notation
will be used to indicate dimensionless variables. It is convenient to adopt a system of
cylindrical coordinates (r, θ, z) in which vx = vr cos θ − vθ sin θ , vy = vr sin θ + vθ cos θ ,
in terms of which the condition (A 1) becomes

∂vr

∂z
= S cos θ,

∂vθ

∂z
= −S sin θ. (A 3)
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Following Ranger (1978) (see also Smith 1987; Davis 1991; Stone & Ajdari 1998),
we represent the velocity field in the form

v = ∇ ×
[
sin θ

r
χ(r, z)êz + ∇ ×

(
cos θ

r
ψ(r, z)êz

)]
(A 4)

where êz is a unit vector normal to the plane and

Lχ = 0 L2ψ = 0 (A 5)

with

L =
∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2
. (A 6)

The Cartesian velocity components follow from (A 4) as

vx(r, z, θ) =
1

2
r∂r

[
1

r2
(∂zψ − χ)

]
cos 2θ +

1

2r
∂r (∂zψ + χ), (A 7)

vy(r, z, θ) =
1

2
r∂r

[
1

r2
(∂zψ − χ)

]
sin 2θ, (A 8)

vz(r, z, θ) = −∂r

(
1

r
∂rψ

)
cos θ, (A 9)

while, from the Stokes equation, the pressure is found as

p(r, z, θ) = µ
cos θ

r

∂

∂z
Lψ. (A 10)

The solution of (A 5) is sought in the form of Hankel transforms with the result

ψ = rz

∫ ∞

0

e−kzJ1(kr)ψ̃(k) dk, (A 11)

χ = r

∫ ∞

0

e−kzJ1(kr)χ̃ (k) dk. (A 12)

The functions ψ̃ and χ̃ must be determined by imposing the boundary conditions.
Upon substituting (A 11) and (A 12) into (A 7) and (A 8), we find that the no-slip
condition outside the disk is satisfied provided that∫ ∞

0

J1(kr)
(
ψ̃(k) + χ̃ (k)

)
dk =

d

r
, r > 1, (A 13)

∫ ∞

0

J1(kr)
(
ψ̃(k) − χ̃ (k)

)
dk = 0, r > 1, (A 14)

where d is an integration constant to be determined later. The stress condition (A 1)
inside the disk is satisfied provided that∫ ∞

0

J1(kr)
(
−2ψ̃(k) − χ̃(k)

)
k dk = Sr, 0 < r < 1, (A 15)∫ ∞

0

J1(kr)
(
−2ψ̃(k) + χ̃(k)

)
k dk = br, 0 < r < 1, (A 16)
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where b is another integration constant. Upon adding and subtracting, we find two
pairs of dual integral equations for ψ̃ and χ̃ :∫ ∞

0

J1(kr)ψ̃(k) dk =
d

2r
, 1 < r, (A 17)∫ ∞

0

J1(kr)ψ̃(k)k dk = −1

4
(b + S)r, 0 < r < 1, (A 18)

and ∫ ∞

0

J1(kr)χ̃ (k) dk =
d

2r
, 1 < r, (A 19)∫ ∞

0

J1(kr)χ̃ (k)k dk =
1

2
(b − S)r, 0 < r < 1. (A 20)

Both these problems have the standard Titchmarsh form∫ ∞

0

J1(kr)c̃(k) dk =
B

r
, 1 < r, (A 21)∫ ∞

0

J1(kr)c̃(k)k dk = Ar, 0 < r < 1, (A 22)

the solution of which is (see e.g. Sneddon 1966, p. 84):

c̃ =
2

3

√
2

π
A

J5/2(k)√
k

+ B
sin k

k
. (A 23)

With this result the Hankel transforms can be evaluated in their complementary
intervals finding∫ ∞

0

J1(kr)c̃(k)k dk =

(
B − 4A

3π

)
1

r
√

r2 − 1
− 4A

2πr

[√
r2 − 1 − r2arcsin

(
1

r

)]
, r > 1,

(A 24)∫ ∞

0

J1(kr)c̃(k) dk =
4

3

A

π
r
√

1 − r2 + B
1 −

√
1 − r2

r
, 0 < r < 1. (A 25)

For both expressions to be regular at r = 0 it is necessary that

B =
4A

3π
. (A 26)

Upon imposing this condition on the solutions for ψ̃ and χ̃ we find

d = − 8

9π
S, b =

1

3
S (A 27)

so that, finally,

ψ̃ = χ̃ = − 4S

3
√

2π

J3/2(k)√
k

=
4S

3π

k cos k − sin k

k3
. (A 28)

The velocity field inside the disk is readily calculated from these expressions, giving

vx(r, 0, θ) = −4S

3π

√
1 − r2, vy(r, 0, θ) = 0. (A 29)
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The average velocity over the disk is found from direct integration:

1

π

∫ 2π

0

dθ

∫ 1

0

r drvx(r, 0, θ) = −8S

3π

∫ 1

0

r
√

1 − r2 dr = − 8

9π
S, (A 30)

while the y component vanishes. Although not necessary for the solution of the
problem at hand, it may be of interest to also show explicitly the expressions for the
velocity and pressure fields away from the disk. With the definitions:

�1 =
1

2
[
√

(r + 1)2 + z2 −
√

(r − 1)2 + z2], (A 31)

�2 =
1

2
[
√

(r + 1)2 + z2 +
√

(r − 1)2 + z2], (A 32)

the integrals can be evaluated to find (see Gradshteyn & Ryzhik 2000, sections 6.621,
6.751 and 6.752)

vx(r, z, θ) = −2Sz

3π
r2

√
�2

2 − 1(
�2

2 − �2
1

)
�4

2

cos2θ − 4S

3π

(√
1 − �2

1 − zarcsin

(
1

�2

))

− 2Sz

3π

( √
�2

2 − 1(
�2

2 − �2
1

) − arcsin

(
1

�2

))
, (A 33)

vy(r, z, θ) = −2Sz

3π
r2

√
�2

2 − 1(
�2

2 − �2
1

)
�4

2

sin2θ, (A 34)

vz(r, z, θ) =
4Sz

3π

(
−�2

1

√
1 − �2

1(
�2

2 − �2
1

)
r

)
cos2θ, (A 35)

p(r, z, θ) =
8Sµ

3π

(
−�2

1

√
1 − �2

1(
�2

2 − �2
1

)
r

)
cos2θ. (A 36)

Appendix B. Solution of the two-dimensional problem
In this case it is convenient to adopt as fundamental length 1

2
a and a Cartesian

system of coordinates with x along the flow direction and y along the normal. The
boundary conditions of the Stokes problem for vx and vy become

vx(x, 0) = 0, |x| > 1, (B 1)

∂yvx(x, 0) = S, |x| < 1, (B 2)

vy(x, 0) = 0, −∞ < x < ∞, (B 3)

where

S = − 1

µ
〈τxy〉. (B 4)

We introduce a stream function ψ in terms of which

vx(x, y) = ∂yψ, vy(x, y) = −∂xψ (B 5)

and

ω = ∂yvx − ∂xvy = �
2ψ. (B 6)



448 M. Sbragaglia and A. Prosperetti

The vorticity ω is harmonic and can be written as a Fourier integral in the form

ω(x, y) =

∫ ∞

−∞
dk exp(ikx)ω̃(k)e−|k|y. (B 7)

By introducing the Fourier transform ψ̃(k, y) of the stream function, substituting into
(B 6), and integrating, we find

ψ̃(k, y) = −yω̃(k)

2|k| e−|k|y (B 8)

after elimination of an integration constant on the basis of (B 3). With this result, the
boundary condition (B 1) becomes∫ ∞

−∞
dk exp(ikx)ω̃(k) = S, |x| < 1, (B 9)

and (B 2) ∫ ∞

−∞
dk exp(ikx)

ω̃(k)

|k| = 0, |x| > 1. (B 10)

Upon writing (B 9) for x and −x and adding or subtracting, we find∫ ∞

−∞
dk cos(kx)ω̃(k) = S, 0 < x < 1, (B 11)∫ ∞

−∞
dk sin(kx)ω̃(k) = 0, 0 < x < 1. (B 12)

Proceeding in a similar way with (B 10) we have∫ ∞

−∞
dk cos(kx)

ω̃(k)

|k| = 0, 1 < x, (B 13)∫ ∞

−∞
dk sin(kx)

ω̃(k)

|k| = 0, 1 < x. (B 14)

If in (B 11) we separate the integration range into −∞ < k < 0 and 0 < k < ∞ we
find ∫ ∞

0

dk cos(kx)ω̃+ = S, 0 < x < 1, ω̃+ = ω̃(k) + ω̃(−k), (B 15)

whereas (B 12) gives∫ ∞

0

dk sin(kx)ω̃− = 0, 0 < x < 1, ω̃− = ω̃(k) − ω̃(−k). (B 16)

Similarly ∫ ∞

0

dk cos(kx)
ω̃+

k
= 0, 1 < x, (B 17)∫ ∞

0

dk sin(kx)
ω̃−

k
= 0, 1 < x. (B 18)

Since the problem for ω̃− is completely homogeneous, this quantity must vanish so
that ω̃(k) is even in k and, therefore, real. We are thus led to the pair of dual integral
equations ∫ ∞

0

dk cos(kx)ω̃ = 1
2
S, 0 < x < 1, (B 19)
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0

dk cos(kx)
ω̃

k
= 0, 1 < x. (B 20)

This is a standard problem with the solution (see e.g. Sneddon 1966, p. 84)

ω̃(k) = 1
2
SJ1(k) (B 21)

from which the velocity on the boundary follows as

vx(x, 0) = −S

2
cos (arcsin x) = −S

2

√
1 − x2, x < 1, (B 22)

so that

1

2

∫ 1

−1

vx(x, 0)dx = −π

8
S. (B 23)

This result coincides with that derived by different means in Philip (1972). As before,
it may be of some interest to show the explicit results for the velocity and pressure
fields. One has

vx(x, y) = −S

2

∫ ∞

−∞
dk cos(kx)

(
1

|k| − y

)
ω̃(k) e−|k|y, (B 24)

vy(x, y) = −S

2

∫ ∞

−∞
dk sin(kx)yω̃(k) e−|k|y, (B 25)

p(x, y) = −2S

∫ ∞

0

dk sin(kx)ω̃(k) e−ky. (B 26)

The integrals can be evaluated to find

vx(x, y) = −S

2
R(x, y) − yS

2
∂yR(x, y), (B 27)

vy(x, y) =
yS

2
∂yI (x, y), (B 28)

p(x, y) = S∂yR(x, y), (B 29)

with

R(x, y) = −y +

√
(1 − x2 + y2) +

√
(1 − x2 + y2)2 + 4x2y2

2
, (B 30)

I (x, y) = x +

√
−(1 − x2 + y2) +

√
(1 − x2 + y2)4 + 4x2y2

2
. (B 31)
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